6 research outputs found

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    Sampling Based Motion Planning for Heavy Duty Autonomous Vehicles

    No full text
    The automotive industry is undergoing a revolution where the more traditional mechanical values are replaced by an ever increasing number of Advanced Driver Assistance Systems (ADAS) where advanced algorithms and software development are taking a bigger role. Increased safety, reduced emissions and the possibility of completely new business models are driving the development and most automotive companies have started projects that aim towards fully autonomous vehicles. For industrial applications that provide a closed environment, such as mining facilities, harbors, agriculture and airports, full implementation of the technology is already available with increased productivity, reliability and reduced wear on equipment as a result. However, it also gives the opportunity to create a safer working environment when human drivers can be removed from dangerous working conditions. Regardless of the application an important part of any mobile autonomous system is the motion planning layer. In this thesis sampling-based motion planning algorithms are used to solve several non-holonomic and kinodynamic planning problems for car-like robotic vehicles in different application areas that all present different challenges. First we present an extension to the probabilistic sampling-based Closed-Loop Rapidly exploring Random Tree (CL-RRT) framework that significantly increases the probability of drawing a valid sample for platforms with second order differential constraints. When a tree extension is found infeasible a new acceleration profile that tries to brings the vehicle to a full stop before the collision occurs is calculated. A resimulation of the tree extension with the new acceleration profile is then performed. The framework is tested on a heavy-duty Scania G480 mining truck in a simple constructed scenario. Furthermore, we present two different driver assistance systems for the complicated task of reversing with a truck with a dolly-steered trailer. The first is a manual system where the user can easily construct a kinematically feasible path through a graphical user interface. The second is a fully automatic planner, based on the CL-RRT algorithm where only a start and goal position need to be provided. For both approaches, the internal angles of the trailer configuration are stabilized using a Linear Quadratic (LQ) controller and path following is achieved through a pure-pursuit control law. The systems are demonstrated on a small-scale test vehicle with good results. Finally, we look at the planning problem for an autonomous vehicle in an urban setting with dense traffic for two different time-critical maneuvers, namely, intersection merging and highway merging. In these situations, a social interplay between drivers is often necessary in order to perform a safe merge. To model this interaction a prediction engine is developed and used to predict the future evolution of the complete traffic scene given our own intended trajectory. Real-time capabilities are demonstrated through a series of simulations with varying traffic densities. It is shown, in simulation, that the proposed method is capable of safe merging in much denser traffic compared to a base-line method where a constant velocity model is used for predictions

    Path tracking and stabilization for a reversing general 2-trailer configuration using a cascaded control approach

    No full text
    In this paper a cascaded approach for stabilizationand path tracking of a general 2-trailer vehicle configurationwith an off-axle hitching is presented. A low level LinearQuadratic controller is used for stabilization of the internalangles while a pure pursuit path tracking controller is used ona higher level to handle the path tracking. Piecewise linearityis the only requirement on the control reference which makesthe design of reference paths very general. A Graphical UserInterface is designed to make it easy for a user to design controlreferences for complex manoeuvres given some representationof the surroundings. The approach is demonstrated with challengingpath following scenarios both in simulation and on asmall scale test platform.iQMati

    Motion planning for a reversing general 2-trailer configuration using Closed-Loop RRT

    No full text
    Reversing with a dolly steered trailer configura- tion is a hard task for any driver without extensive training. In this work we present a motion planning and control framework that can be used to automatically plan and execute complicated manoeuvres. The unstable dynamics of the reversing general 2- trailer configuration with off-axle hitching is first stabilised by an LQ-controller and then a pure pursuit path tracker is used on a higher level giving a cascaded controller that can track piecewise linear reference paths. This controller together with a kinematic model of the trailer configuration is then used for forward simulations within a Closed-Loop Rapidly Exploring Random Tree framework to generate motion plans that are not only kinematically feasible but also include the limitations of the controller’s tracking performance when reversing. The approach is evaluated over a series of Monte Carlo simulations on three different scenarios and impressive success rates are achieved. Finally the approach is successfully tested on a small scale test platform where the motion plan is calculated and then sent to the platform for execution. Funding agencies: FFI/VINNOVAiQMati

    Interaction aware trajectory planning for merge scenarios in congested traffic situations

    No full text
    In many traffic situations there are times where interaction with other drivers is necessary and unavoidable in order to safely progress towards an intended destination. This is especially true for merge manoeuvres into dense traffic, where drivers sometimes must be somewhat aggressive and show the intention of merging in order to interact with the other driver and make the driver open the gap needed to execute the manoeuvre safely. Many motion planning frameworks for autonomous vehicles adopt a reactive approach where simple models of other traffic participants are used and therefore need to adhere to large margins in order to behave safely. However, the large margins needed can sometimes get the system stuck in congested traffic where time gaps between vehicles are too small. In other situations, such as a highway merge, it can be significantly more dangerous to stop on the entrance ramp if the gaps are found to be too small than to make a slightly more aggressive manoeuvre and let the driver behind open the gap needed. To remedy this problem, this work uses the Intelligent Driver Model (IDM) to explicitly model the interaction of other drivers and evaluates the risk by their required deceleration in a similar manner as the Minimum Overall Breaking Induced by Lane change (MOBIL) model that has been used in large scale traffic simulations before. This allows the algorithm to evaluate the effect on other drivers depending on our own trajectory plans by simulating the nearby traffic situation. Finding a globally optimal solution is often intractable in these situations so instead a large set of candidate trajectories are generated that are evaluated against the traffic scene by forward simulations of other traffic participants. By discretization and using an efficient trajectory generator together with efficient modelling of the traffic scene real-time demands can be met.Funding agencies: FFI/VINNOVAiQMati
    corecore